M1.	(a)	distance is a scalar and displacement is a vector or distance has magnitude only, displacement has magnitude and direction
	(b)	37.5 km accept any value between 37.0 and 38.0 inclusive
		062° or N62°E accept 62° to the right of the vertical 1
		accept an angle in the range 60° −64° accept the angle correctly measured and marked on the diagram
	(c)	train changes direction so velocity changes
		acceleration is the rate of change of velocity 1
	(d)	number of squares below line = 17 accept any number between 16 and 18 inclusive 1
		each square represents 500 m
		distance = number of squares × value of each square correctly calculated – 8500 m

[8]

M2.(a) (i) 9.5 accept ±1 mm 1 10.5 1 (ii) 9.5 ecf from (a)(i) 1 (iii) 190 20 × (a)(ii) ecf 1 (iv) medium ecf from (a)(iii) 1 (b) (i) any **two** from: position of ball before release same angle **or** height of runway same ball same strip of grass 2 (ii) long longer than in part (a) or uneven do not allow reference to speed 1

(c)	(i)	as humidity increases mean distance decreases accept speed for distance	1
	(ii)	71 × 180 = 12780 79 × 162 = 12798 87 × 147 = 12789 all three calculations correct with a valid conclusion gains 3 marks	
		<pre>or find k from R = k / d all three calculations correct gains 2 marks</pre>	
		or 87 / 71 × 147 = 180.1 ~ 180 87 / 79 × 147 = 161.9 ~ 162 two calculations correct with a valid conclusion gains 2 marks	
		conclusion based on calculation one correct calculation of k gains 1 mark	3
	(iii)	only three readings or small range for humidity accept not enough readings accept data from Internet could be unreliable ignore reference to repeats	1
(d)	dist	ance is a scalar or has no direction or has magnitude only allow measurements from diagram of distance and displacement	1
	disp	lacement is a vector or has direction	_

[15]

change in speed/velocity

M3. (a) acceleration =

time taken

or $\frac{10}{4}$

gains 1 mark do not penalise if <u>both</u> of these present but 'change in' omitted from formula

but

2.5

gains 2 marks

unit m/s² or metres per second squared

or metres per second per second

or ms-*

for 1 mark

3

(b) evidence of using area under graph or distance average speed × time or

 $10 \times 4 \times \frac{1}{2}$

gains 1 mark

but

20

gains 2 marks

units metres / m-2*

for 1 mark

3

(c) force = mass × acceleration **or** 75 × 25 gains 1 mark

but

1875

gains 2 marks

*NB Correct unit to be credited even if numerical answer wrong or absent.

2