M1. (a) distance is a scalar and displacement is a vector
or
distance has magnitude only, displacement has magnitude and direction
(b) 37.5 km
accept any value between 37.0 and 38.0 inclusive
062° or $\mathrm{N} 62^{\circ} \mathrm{E}$
accept 62° to the right of the vertical
accept an angle in the range $60^{\circ}-64^{\circ}$
accept the angle correctly measured and marked on the diagram
(c) train changes direction so velocity changes
acceleration is the rate of change of velocity
(d) number of squares below line $=17$
accept any number between 16 and 18 inclusive
each square represents 500 m
distance $=$ number of squares \times value of each square correctly calculated -8500 m

M2.(a) (i) 9.5
10.5
(ii) 9.5
ecf from (a)(i)
(iii) 190
$20 \times$ (a)(ii) ecf
(iv) medium
ecf from (a)(iii)
(b) (i) any two from:

- position of ball before release
- same angle or height of runway
- same ball
- same strip of grass
(ii) long
or
longer than in part (a)
or
uneven
do not allow reference to speed
(c) (i) as humidity increases mean distance decreases accept speed for distance
(ii) $71 \times 180=12780$
$79 \times 162=12798$
$87 \times 147=12789$
all three calculations correct with a valid conclusion gains 3 marks

or

find k from $R=k / d$
all three calculations correct gains $\mathbf{2}$ marks
or
$87 / 71 \times 147=180.1 \sim 180$
$87 / 79 \times 147=161.9 \sim 162$
two calculations correct with a valid conclusion gains 2 marks
conclusion based on calculation
one correct calculation of k gains 1 mark
(iii) only three readings or small range for humidity accept not enough readings accept data from Internet could be unreliable ignore reference to repeats
(d) distance is a scalar or has no direction or has magnitude only allow measurements from diagram of distance and displacement
displacement is a vector or has direction
[15]

M3. (a) acceleration = time taken
or $\frac{10}{4}$
gains 1 mark
do not penalise if both of these present but 'change in' omitted from formula
but
2.5
gains 2 marks
unit $\mathrm{m} / \mathrm{s}^{2}$ or metres per second squared
or metres per second per second
or ms-*
for 1 mark
(b) evidence of using area under graph or distance average speed \times time or
$10 \times 4 \times \frac{1}{2}$
gains 1 mark
but
20
gains 2 marks
units metres $/ \mathrm{m}^{-2^{*}}$
for 1 mark
(c) force $=$ mass \times acceleration or 75×25
gains 1 mark
but
1875
gains 2 marks
*NB Correct unit to be credited even if numerical answer wrong or absent.

